The Lost Forest on Cedar Island

The lost forest on Cedar Island in the Deschutes River canyon

Head north from the tiny town of Maupin into the arid desert canyon of the Deschutes River and you will eventually reach a wide gooseneck in the river, where a low ridge that forms the bend is known as the “Beavertail”. As the gravel access road crests the Beavertail, a river island dotted with trees suddenly comes into view. The scene is startling in an environment where even Western juniper struggle to survive, and the few trees that exist are mostly thickets of Red alder hugging the river’s edge.

At first glance, these seem to be Ponderosa pine, a reasonable guess, given that Ponderosa are the most drought tolerant of the big confers in Oregon. But as you approach a few of these trees that have jumped the island and flank the access road, it becomes clear that these aren’t pines at all. 

CedarIslandGrove02.jpg

Panoramic view of Cedar Island

[click here for a large panorama]

In fact, this is a lost stand of about sixty Incense cedar (Calocedrus decurrens) trees forming a completely isolated colony in the middle of the desert. They have found a way to thrive more than 20 miles east of the nearest stand, in the Cascade Mountain, where these trees grow along the forested southeast slopes of Mount Hood. Here, they survive with just 10-15” of rain per year, compared to the 40-50” their mountain cousins receive.

Incense Cedar (Calocedrus decurrens) foliage – a close cousin to our familiar Western red cedar

CedarIslandGrove04.jpg

The thick, distinctively reddish bark on Incense Cedar gives the tree some insulation from range fires

A closer look at the bright green foliage of these trees shows Incense cedar to be a cousin to Oregon’s Western red cedar, Alaska cedar and Port Orford cedar. None of these are true cedars, but all are related members in the cypress family, and all but the Port Orford cedar grow on the slopes of Mount Hood. 

Of these, the Incense cedar is the most drought-tolerant and thrives on the dry side of the Cascades, among other big conifers like Douglas fir and Ponderosa Pine. Incense Cedar tend to grow interspersed among these other trees, and seldom form pure stands. That’s part of what makes the lost grove on Cedar Island unique, though that’s also a reflection of the extreme environment they have pioneered here – one that other big conifers are not able to survive.

CedarIslandGrove05.jpg

Young Incense cedar have a beautiful conical form that makes them popular trees in urban landscapes

Young Incense cedar are prized as cultivated trees for their brilliant foliage and symmetrical, conical shape (above). As they age, Incense cedar begin to look more like a distant cousin to Giant sequoia, with deeply furrowed red bark and tortured, often multiple-trunked forms. 

Incense cedar can live for centuries and reach as much as 150 feet in height at maturity. The champion in Oregon grows in the Siskiyou Mountains, and is 150 feet tall with a circumference of nearly 40 feet. Another dual-trunked Incense cedar in Southern Oregon is known as the Tanner Lake Giant (below), measured at 137 feet tall and more than 40 feet in circumference.

A person standing next to a large tree

Description automatically generated with medium confidence

The mighty, two-trunked Tanner Lake Giant in Southern Oregon is more 40 feet in diameter (Wikipedia)

Mount Hood’s Incense cedar stands mark the very northern extreme of the range of these trees, which extends as far south as a few isolated stands in Baja. In California, they grow throughout the Sierras, with big Incense Cedar sprinkled among the Giant sequoia in Yosemite Valley. The trees also grow in isolated groves throughout California’s coastal mountains. In Oregon, scattered stands grow in the Ochoco Mountains and along some of the western ridges of the Great Basin.

Incense Cedar grow from Mount Hood south to the Baja Peninsula, following the east flank of the Cascades to the Siskiyous and along the Sierras

Most of the isolated stands of Incense cedar in dry places like the California coast ranges or Oregon Ochoco Mountains mark places where mountains rise up enough to produce an island of rainfall in an otherwise dry region. The trees of Cedar Island are just the opposite. Their habitat is at the bottom of a rocky desert canyon makes their ability to thrive here all the more remarkable.

Why here?

The Cedar Island lost forest of Incense cedar is truly remote. The following perspective view (below) shows just how far Cedar Island is from the green forests of the Cascades, nearly 20 miles to the west. Why did this grove of just 60 trees make its home here? 

[click here for a large map]

Part of the answer is the island, itself. While Incense cedar are most often found on dry sites in their typical mountain habitat, the Cedar Island grove lives on a gravel bar in the middle of the Deschutes River, where trees can touch the water table year-round with their roots. While the winters are plenty cold along the Deschutes – similar to the mountain habitat these trees prefer – the summers are intensely hot and arid. The basalt walls of the Deschutes Canyon also act to contain summer heat, creating a true oven during summer heat waves. The ability of the Cedar Island grove to maintain constant access to groundwater undoubtedly helps counter the lack of rainfall and summer heat they endure.

CedarIslandGrove09.jpg

The Incense Cedars of Cedar Island rise above thickets of Red alder beneath the protective west wall of the Deschutes River canyon

Still, there are plenty of other gravel bars along the Deschutes, and only Cedar Island supports a grove of big conifers. What makes this gravel bar different? 

Part of the puzzle is shape of the canyon walls that surround Cedar Island. At the Beavertail Bend, the Deschutes River swings sharply west, then reverses to head directly east, in each case carving near-vertical, 2,000 foot walls of basalt over the millennia. The aspect of these walls helps shade Cedar island by shortening exposure to hot summer sun by several hours per day compared to less protected parts of the canyon.

Cedar Island is protected from mid-day summer sun by towering, 2,000-foot canyon walls to the south and east

The west (upstream) end of Cedar Island seems to confirm the role of the canyon walls in allowing the Incense Cedar groves to survive. This part of the island (below) extends beyond the protective shade of the steep south wall of the canyon, and into the wide section of canyon where it is more exposed to the intense morning and midday sun during the hot summer months.

CedarIslandGrove11.jpg

The west end of Cedar Island seems to be too exposed to summer sun for the Incense Cedars to survive there

Another piece of the puzzle is the gravel that makes up island, itself. While it allows the Cedar Island colony to reach the shallow water table with their root systems, it’s also very well-drained above the water table – something that Incense cedars prefer. At 10-12 feet above the average river level, the gravel bar is also tall enough to avoid being inundated or eroded by all but the worst flood events.

When did the Cedar Island colony become established? That’s unknown, but an image (below) taken from the east canyon rim in 1905 shows the island to be virtually cleared. There are a couple of explanations. First, the photo shows both rail lines that were under construction at the time, a race between two railroad barons that became known as “The Deschutes Railroad War”. It’s quite possible that Incense Cedar on the island were cut by the railroad crews for construction material or simply firewood. It’s also possible that the trees were actually introduced here at the time when the canyon was being intensely developed by the railroads. But the fact that the island was named for its cedars suggests the colony was here when railroad surveyors arrived.

1905 view of Cedar Island from the east canyon rim shows few trees compared to today… why?

Another explanation for the relatively bare island in 1905 could be flooding. Though the Deschutes is not prone to catastrophic floods like rivers west of the Cascades, the upstream dams didn’t exist when the first Incense Cedars pioneered the island. therefore, it’s likely that periodic floods swept across this flat sandbar – which was, itself, created by floods. The colony must have found a way to rebound from these events, assuming the Incense cedar grove has been here for centuries.

The following images (below) from 1911 were taken from the west side of the canyon and confirm that the Incense cedar grove on the island was much smaller at the turn of the century. These later images marked the end of construction of the railroad on the east side of the river. Today, a smaller colony of Incense cedar grows along the old railroad grade (now the access road) in the shade of the eastern canyon wall.

1911 view of Beavertail Bend from the west canyon rim, looking toward Cedar Island

Closer look at Cedar Island in the 1911 view showing just a few Incense cedars growing along the south margin of the island

Yet another explanation for the smaller grove in the early 1900s might be range fires. The sagebrush country of Oregon’s east side burns periodically, and fire is a natural, essential part of the ecosystem. For their part, Incense cedar have fire resistant bark that allows the trees to survive low-intensity fires (similar to Ponderosa pine and Sequoia), but when their crowns burn in more intensive fires, they have evolved to reseed and re-establish themselves quickly on burned ground. It could even be the case that railroad construction triggered a fire that cleared Cedar Island sometime before this photo was taken.

In 2018 a trio of range fires (below) swept through Wasco County, burning much of the lower Deschutes River canyon. The fires destroyed dozens of farm dwellings and outbuildings, too, a painful reminder that fires will always be part of the desert ecosystem here, even with much of the landscape converted to wheatfields. The Longhollow Fire was the middle of the three fires, and burned to the northwest bank of the Deschutes, but apparently did not jump the river to Cedar Island. 

[click here for a large map]

Had the fire reached the island, it could easily have crowned some of the Incense cedar trees. The open, park-like forest here has allowed the trees to keep their limbs almost to the ground, where trees in mixed forests typically lose their lower limbs. 

A high crown helps protect a mature tree from low-to moderate intensity fires at its base climbing lower limbs like a ladder and potentially engulfing its crown. But unlike the forest fires that occur in the typical Incense Cedar range, range fires in open sagebrush country are generally low-intensity, fast-moving burns due to the lack of available fuels compared to forest fires, so even trees with low limbs can often survive range fires.

A closer look at the island suggests the fire did not cross the river in 2018, nor have fires burned the island in some time. First, none of the trees on Cedar Island shows burn marks on their lower trunks, a telltale sign of range fires that lasts for decades on trees that survive. Second, the presence of downed wood and a few Incense Cedar seedlings (below) confirms that no recent fires have swept the island, as young trees would almost certainly have been killed and dead forest debris completely burned.

CedarIslandGrove16.jpg

The trunks of the Cedar Island grove don’t show burn marks, suggesting that range fires haven’t swept the island in decades

CedarIslandGrove17.jpg

The downed alder logs in this view would almost certainly have burned in 2018, had the Longhollow Fire jumped the river. The small Incense cedar seedling toward the top of this photo would almost certainly have been killed by fire, as well.

Whatever the cause of Cedar Island being cleared at the turn of the 1900s, the grove of Incense cedars is well-established today, with large trees that could have started life soon after these early photos were taken. Yet, the lack of young trees on the island today is also noticeable, with just a few younger trees sprinkled among the mature stand. This could be due to competition, with the spacing of the trees defined by their root systems, and little moisture left for young trees to get established. 

CedarIslandGrove16.jpg

Most of the Incense Cedars on the island are mature, with few small seedlings present

Some of the younger trees that do exist are crowded along the river’s edge, suggesting that other young trees farther from the edge of the island simply couldn’t compete with the larger trees for available groundwater with their smaller, shallow root systems.

CedarIslandGrove17.jpg

In their normal habitat, it would be rare for Incense cedars to hug a stream, but on Cedar Island it may be the only way young trees can become established

One of the secrets of the survival of the Cedar Island grove could be the small group of younger trees growing at the shaded foot of the southeast canyon wall. These are the only Incense cedars from the colony that extend beyond the island, and a number of very young trees are getting established here now. It could be that this part of the grove has helped reseed the island after flood events over the centuries.

It’s hard to see if this group of trees existed in the 1905 and 1911 photos, and it’s likely that railroad construction would have erased any trees in this area, anyway. But without any better evidence, it’s also possible that this branch of the colony is relatively new, seeded here by mature trees on the island after the railroad construction ended. If so, why did the colony move there, to steep rocky slopes far above the river and readily available water table?

This view shows a branch of the Cedar Island colony growing along the base of the eastern canyon wall. These trees are younger and seem to be expanding their presence, despite growing on rocky slopes far above the water table created by the river

The best explanation for this branch colony is probably the sun protection provided by the canyon walls, as these trees are growing in an “elbow” where the north and west facing walls meet, creating a relatively cool setting for much of the day during the hot summer season. But another part of the story is likely groundwater seeping through a steep ravine that cuts through the layers of basalt where the branch colony is centered.

CedarIslandGrove21.jpg

The branch colony of the Cedar Island lost forest is thriving on the south wall of the Deschutes River canyon, with many young trees becoming established in this unexpected habitat

Whatever their origin, the younger grove along the canyon wall is a helpful insurance policy for the survival of the Cedar Island colony over the long haul. These are young trees, yet clearly well-established, so in the event the island trees are destroyed by fire or flood, these trees could be a source for re-seeding the island. Likewise, the island might well survive range fires that could destroy the canyon wall grove and help reseed that part of the colony.

CedarIslandGrove22.jpg

This young Incense cedar in the branch colony may someday play a part in reseeding Cedar Island and helping the lost forest here continue to survive

The mystery of the lost forest on Cedar Island brings more questions than answers, and it deserves more study to better understand the phenomenon and help preserve the colony. I’m hoping this article might inspire a local researcher or graduate student (with a passion for rafting or kayaking!) to step up to the challenge. The island is on public land managed by the Bureau of Land Management, and seems reasonably protected from development, though it doesn’t seem to have any sort of special protection for its unique ecological value.

The lost Incense cedar forest on Cedar Island in the Deschutes River canyon

In the meantime, the island makes for an interesting stop on a tour of the lower Deschutes River canyon, whether by car, bicycle or on the river. The island is located immediately downstream from the Beavertail campground. There are pullouts along the access road with good views of the island, and if you’re up for a walk, you can simply park at a pullout and walk the exceptionally scenic road for a stretch. 

Along the way, you’ll pass another coniferous anomaly — the “Big Pine” located just north of the twin railroad bridges at Horseshoe Bend. This old Ponderosa pine grows on a gravel fan at the base of seep that gives it enough year-round water to become quite established here. The BLM has placed a picnic table under the tree and there is a toilet nearby, too.

CedarIslandGrove24.jpg

The “Big Pine” just north of the twin railroad bridges along the Deschutes River access road

From the beginning of the well-marked access road near Sherars Bridge, it’s 17 miles to the end of the well-graded gravel road, so this makes a good adventure if you’re looking for something off the beaten path. Map 6 on the following BLM webpage covers the route from Sherars bridge to Cedar Island and Map 7 covers the remainder of the access road to Macks Canyon:

BLM Maps of the Deschutes River Canyon

Curious about the Deschutes Railroad War? Here’s a short overview that gives some insight into the dramatic rail alignment in the Deschutes canyon:

Deschutes Railroad War (C-SPAN)

For a deeper dive into the Deschutes Railroad War, you can find out-of-print copies of Leon Speroff’s excellent book on the subject, with dozens of historic photos presented in large, coffee-table format.

CedarIslandGrove25.jpg

Leon Speroff’s excellent book covers the surprising railroad history of the Deschutes in detail — plus some of the natural history of the canyon

The Deschutes River access road can be reached by following the Sherars Bridge Highway (OR  216) from where it joins Highway 197 in Tygh Valley. Follow signs to Grass Valley, then turn onto the well-marked access road about a mile after crossing Sherars Bridge. You’ll pass White River Falls State Park along the way, another worthy stop if you’re in the area.

One of the best times to visit the lower Deschutes is in winter and early spring, when campers and rafters are scarce and you will have the place pretty much to yourself. As with all trips to the dry east side of the mountains, ticks, poison oak and even the occasional rattlesnake are residents here, so watch your step and do a tick check when you get home.

Enjoy!

Learning to say no… to ourselves?

The Riverside Fire shortly after it exploded into a major conflagration in September 2021 (USFS)

In the aftermath of the 49,000-acre Eagle Creek Fire in 2017, we learned the following essential facts:

  • The fire was human-caused by a careless teenager throwing fireworks over a cliff along the Eagle Creek Trail on a crowded Labor Day weekend with extreme fire conditions. 176 hikers had to be rescued after the fire exploded. The teenager was later sentenced to extensive community service working with forest crews
  • No human life and minimal loss of structures occurred, despite the close proximity to the town of Cascade Locks and hundreds of homes built in the forest fringes adjacent to the national forest
  • Though human-caused, the scale and timing of the fire was completely in line with historic large fires in the Gorge, occurring roughly every century. The last major fire on the Oregon side was also centered on the Eagle Creek and Tanner Creek areas, in the late 1800s. The massive Yacolt Burn on the Washington side occurred in 1902
  • The forest recovery following the fire was immediate, reassuring, and continues without human intervention (in the form of replanting)
  • The extreme weather conditions and risk for fire was forecast in advance by the National Weather Service, yet this information was not enough to persuade the U.S. Forest Service or the Oregon Parks and Recreation Division to reconsider public access to the Gorge that fateful Labor Day weekend.

Powerful easterly winds drove the massive Riverside Fire west, toward the Willamette Valley (USFS)

Flash forward to 2020, and we have a repeat of the Eagle Creek Fire in the form of the 138,000-acre Riverside Fire, which burned much of the Clackamas and Molalla River watersheds after it started the day after Labor Day:

  • Like the Eagle Creek Fire, the Riverside Fire was human-caused, as was the 36 Pit Fire that had previously burned 5,500 acres in the lower Clackamas River canyon in September 2014
  • Like the Eagle Creek Fire in the Gorge, the extreme weather conditions that made the Riverside Fire so explosive were well-predicted and nearly certain to unfold as forecast. We were warned that high winds would blow hot desert air over the Cascade passes in Oregon and Washington, turning mountain canyons into wind tunnels of hot, exceptionally dry air all the way to the Willamette Valley
  • Like the Eagle Creek Fire, the Riverside burned an area that was probably overdue for fire, as measured by the approximately 100-200 year intervals between large fires on the west slopes of the Cascades. Unlike the Gorge, the Clackamas and Molalla basins had been heavily logged by the Forest Service, Bureau of Land Management and the private timber corporations for 70 years, so much of the burn consisted of crowded clear-cut plantations that turned out to be especially vulnerable to fire
  • Unlike the Eagle Creek Fire, thousands of acres of private, previously logged-over plantations burned, and the timber corporations have been aggressively “salvaging” burned trees in the months since the fire occurred – a practice that has been shown to be especially damaging to forest recovery
  • Like the Eagle Creek Fire, towns like Estacada and Molalla were spared, though the fire burned frighteningly close to Estacada. But unlike the Eagle Creek Fire, the Riverside fire destroyed 139 homes and outbuildings and injured four people in its path along the west slope of the Cascades.
  • Like the Eagle Creek Fire, the Riverside turned skies in the Portland metropolitan area orange for days, raining ash on some of the suburbs, and awakening the urban population to the health and economic impacts that large fires have always had on rural communities.

Memaloose Road after the Riverside Fire (USFS)

When it was over, the Riverside fire had burned nearly three times the area of Eagle Creek Fire. The scale of the fire is still sinking in, since the burn area is largely closed to the public, indefinitely. But the few photos the Forest Service has provided show scenes similar to the Eagle Creek Fire, from severely burned areas where the forest canopy was completely killed to areas of “mosaic” burns, a beneficial fire pattern where intensely burned areas are intermixed with less burned forest, where the tree canopy is likely to survive the fire. Early analysis of the first suggests that it was generally more severe than the Eagle Creek fire, with large areas of the Clackamas River watershed severely burned.

The lower Clackamas River canyon has now burned three times in the past 20 years, first with the Bowl Fire in 2002 that burned 339 acres, then the 36 Pit Fire in 2014, and now the massive Riverside Fire. In this recent article [https://wyeastblog.org/tag/clackamas-river/] I described a forest recovery that was already underway when the Riverside Fire swept the through the lower Clackamas River canyon last fall, and we don’t yet know how much of this recovering forest was burned.

Adjusting to our new reality…

While the Eagle Creek and Riverside fires have much in common, and the fires aren’t necessarily outliers compared to historic fires in the area, there are some important takeaways from both fires that are concerning. They underscore the reality that climate change and increased human presence in our forests are accelerating the pace of major forest fires in the Pacific Northwest.

Fire-scorched Fish Creek Campground (USFS)

First, the recent sequence of fires in the lower Clackamas River Canyon is troubling, as we are now seeing fires burn through the same forests in rapid succession. This means that surviving forest patches from the 2002 Bowl Fire also had to contend with the 2014 16 PIt Fire, and later, the 2020 Riverside Fire to continue the benefits of a “mosaic” burn to the lower canyon. While we don’t yet know, we almost certainly lost some (or perhaps all) of these surviving forests from earlier fires. These are the beneficial mosaic survivors that ensure a rapid forest recovery. Without them, we can expect a much slower forest recovery, and more erosion and earth movement will result.

Second, the Forest Service has shown an inability (or unwillingness) to simply close down recreation areas when extreme fire conditions are forecast. Their position is understandable: closing down the Gorge after the Eagle Creek Fire caused much controversy, so we can only imagine the outrage had that been done before that Labor Day in 2017, though we would almost certainly have prevented the catastrophic fire that resulted. Conversely, prevention is rarely credited in our society, so the likely public relations firestorm of closing the forest on Labor Day weekend to avoid a real firestorm in the forest would have been a truly thankless decision for the Forest Service.

Fish Creek drainage after the fire showing a mosaic burn pattern (USFS)

The same holds for the 2020 Riverside Fire. Closing down the Clackamas River recreation corridor to campers, boaters and hikers on Labor Day weekend would surely have set off a major controversy for the Forest Service, and only in hindsight can we know that it would have prevented a catastrophic fire needlessly caused by humans.

I visited the corridor on a busy weekend just before Labor Day, and I was saddened to see “dispersed” campsites all along the Clackamas with campfires burning, despite a ban on fires at the time. These unofficial campsites have a long history and tradition in our national forests, and they have been mushrooming in new places all around WyEast Country in recent years as campers seek to avoid the fees (and rules) of developed campgrounds. As a result, they are increasingly becoming havens for lawless activity, including tree cutting, dumping and illegal fires.

Mobbed “dispersed” campsite in the Clackamas corridor with multiple campfires burning a few days before the Riverside Fire

The Forest Service simply doesn’t have the capacity to meaningfully enforce fire restrictions in the growing number of dispersed sites, and it’s time we view them as the hazard to our forests that they have become. The agency has begun to close some of these sites, but if we learn that the Riverside Fire was ignited by an illegal campfire in a dispersed campsite, then we’ll have a strong case for completely banning them – everywhere.

Would that cause an outcry? Absolutely. But many tough decisions lie ahead if we hope to save our forests from our own bad behavior during a time of unprecedented environmental change.

Forest Service fire patrol attempting to monitor dispersed campers

Parking overload at a dispersed campsite in the Clackamas Corridor a few days before the Riverside Fire

Private utilities saw the fire situation differently last September. Portland General Electric (PGE) opted to shut down its powerlines in the heavily populated Mount Hood corridor and its three powerhouses and adjoining powerlines in the Clackamas River canyon in anticipation of the wind event, for fear of their power system igniting the forest.

Looking back, there’s no way to know if that would have happened, but the recent fires caused by powerlines in California (and resulting lawsuits against the utilities) surely weighed on PGE’s decision. In that light, the frustration of several thousand customers seemed a fair tradeoff to PGE, especially when you consider that the nearby Beachie Creek Fire and other fires that burned throughout Oregon during that weather event were caused by downed powerlines from the extreme wind.

Crowded clear-cut plantations like this fared poorly in the Riverside Fire (USFS)

Another important take-way is that our forests are becoming increasingly stressed by climate change. Our summers are hotter and longer, our snowpack is retreating to higher elevations and is less abundant. This makes our forests much more vulnerable to fire, especially at the end of our summer drought season in late August and into September. Little is known about how global climate change will ultimately affect our forests, but it’s becoming clear that the fire risk is only increasing and scale and frequency, and our forests on the west slope of the Cascades didn’t evolve for that.

As we move forward into this unsettling future, the real question isn’t whether we can make sound judgments about fire danger based on science and observation. We know we can, and the science is getting better and more reliable all the time. Instead, the question is whether we are willing to follow science to make the tough calls?

For this, we need only look to the global COVID-19 pandemic that we are riding out right now. The science behind basic, simple steps to prevent the transmission of the virus is solid and tested. In many societies, science alone has been persuasive enough to encourage mass compliance with prevention efforts. Not so in our country, of course, where putting on a simple face mask devolved into a debate about individual liberties, even as hundreds of thousands of Americans have died from the coronavirus.

This appears to be “safety” logging by ODOT, not post-fire salvage logging — an increasingly discredited practice (USFS)

However, elected leaders in our corner of the country have been willing to follow the science (and face the angry wrath of a vocal few), and the public has overwhelmingly followed orders to keep our distance, shut down places where people gather and hunker down in our homes during this crisis. As loud as the dissenters are, the vast majority of Oregonians (and Washingtonians) have accepted that there are no good options in this crisis, only “least worst” options. Have we now reached a point with human-caused forest fires in our region that the public is similarly ready (or at least resigned) to accept restrictions based on our collective memory of recent, catastrophic fires?

This brings me back to the notorious month of September in WyEast, the time of year when some of our worst human-caused fires have occurred. It’s pretty clear now that the Forest Service isn’t able (or willing) to pre-emptively shut down forest access during the kind of extreme weather conditions to prevent human-caused fires that allowed the Eagle Creek and Riverside fires to explode. We saw yet another reminder of that fact a few weeks ago, when the Forest Service abruptly and unceremoniously re-opened the Eagle Creek Trail and other areas closed by the Eagle Creek Fire in the middle of the holiday vacation, and social media quickly responded, sending a crush of hikers to the trail.

Whale Creek near Indian Henry Campground after the fire (USFS)

Whale Creek before the fire

With this move, the Forest Service squandered a “reset” on access and crowd management the agency had long promised about since the closure began. Worse, the reopening of the Eagle Creek and other Gorge trails was completely at odds with warnings of COVID-19 spreading rampantly over the holidays. The risk of spreading the virus was exponentially higher in December than it had been in March 2020, when the Forest Service DID shut down trails in the Gorge. After a month of hikers crowding the reopened trail — where it is impossible to observe basic COVID precautions — Mother Nature unleashed a “Pineapple Express” deluge of rain in late January that washed out several sections of trail, closing it once again, though only “temporarily”, according to the Forest Service.

Somebody call the Governor..?

Given what we’ve learned about the inability of the Forest Service bureaucracy to act on solid science from these recent events, and especially given that climate change and our own behavior is only ramping up the fire risk, what if our state and local elected leaders were to step in? Could they make these decisions for the Forest Service in the name of public health and safety? Should they?

Mosaic burn along a section of the Clackamas showing some big trees that survived the fire while the clear-cut plantation in the distance was decimated (USFS)

The answer to the first question is yes, they probably could – especially the Governor. Last spring, the Forest Service closed most of the national forests in the Pacific Northwest in response to the broader COVID-19 shutdowns, and in their official words, did so “in consultation with state and local governments and tribes”. This probably means the national forest shutdown in Oregon and Washington occurred because the two governors had ordered a broader shutdown, as opposed to a president who was denying the pandemic at the time. So, while the governors may not have direct authority over federal lands, they appear to have functional authority (and if there are legal experts out there reading this who can answer this question more definitively, I welcome your thoughts!)

But should our elected leaders step up and make this call? The answer to this question is easy. Yes, of course they should. The pandemic has redefined the boundaries for elected leadership, at least for now. And besides, for most of us, it would be an inconvenience to stay home on Labor Day weekend out of an abundance of caution. For those who lost their homes (or the lives of loved ones) in the Oregon fires last September, it’s an especially easy call. If the pandemic has taught Americans anything, we’ve learned that much of what we do in our daily lives can be adjusted to meet needs greater than our own. As Americans, we reserve the right to complain, of course!

Aerial view of the Oak Grove area of the Clackamas basin showing a mosaic burn pattern and the untouched Roaring River Wilderness and Mount Hood, beyond (USFS)

Finally, how urgent is the need to assert some authority over the Forest Service in making the call for public closures during extreme fire conditions? It’s tempting to think the Gorge is immune from big fires for another century, now that much of the Oregon side was burned in the 2017 fire. But three fires in less than 20 years in the lower Clackamas River corridor tells us otherwise. We’re in a new fire reality, now, and the renewal of our forest depends on our ability to prevent further escalation of the fire cycle due to our own behavior.

Next time… Mount Hood?

And then there’s Mount Hood. The north and east sides burned in a series of three fires from 2005 to 2011, but much of the forest on these flanks of the mountain remains unburned, and is ripe for human caused fire by the throngs of hikers and backpackers who visit the mountain in the summer months.

1933 view of Mount Hood and burned-over Zigzag Mountain from burned-over Devils Peak. Everything in this view except for Mount Hood is now reforested. While large fires are not new to the western Cascades, they are becoming more frequent

More ominously, the south and west sides of the mountain haven’t seen major fires in more than a century. The extensive Kinzel and Sherar fires completely burned off several square miles of the forest, from near Timothy Lake all the way north to Lolo Pass, and from the community of Zigzag east to Bennett Pass. Few people lived near the mountain when these fires burned.

Today’s Mount Hood corridor travels through the middle of this largely recovered burn, and the highway is now lined with thousands of homes and hundreds of businesses and resorts. While PGE’s decision to shut down their powerlines in the Mount Hood corridor last September may well have prevented a fire being ignited from electrical lines, but it’s sheer luck that a human-caused fire didn’t occur.

The escalation of west-side fires calls to question the wisdom of continuing to build homes on the forest fringes, too. While most of these are on private land, they drive public policy, with developers and the real estate industry pushing the idea that forest fires can somehow be prevented in perpetuity. Elected officials have been wary to disagree, despite the science being on their side.

Early 1900s view of Government Camp when the south slopes of Mount Hood were still recovering from the last major fire to sweep through the area

In this emerging era of extreme weather and forests stressed by climate change, catastrophic, human-caused fires are quickly becoming an annual concern, even along the temperate west slope of the Cascades. When extreme fire conditions emerge again next summer, and with the Gorge and Riverside fires in our recent memory, are we finally ready and willing to say “no” to ourselves?

Before the COVID pandemic descended upon us last year, I would have been tempted to say “no” to that question, simply because American culture has struggled in recent years with the idea of the collective interest outweighing the individual. But the pandemic has renewed my optimism that we’re turning a page toward an era more like the 1930s and 40s, when a collective consensus emerged toward facing the dual challenges of economic despair and world war.

Despite our divisive domestic politics of the past few years, a working majority in this country has nevertheless emerged on the side of finally addressing climate change. That’s encouraging! After all, climate change is singularly a global threat that demands our collective effort. With restoring forests as one of the most important tools in combatting climate change, this could be the key to rethinking how we can prevent human-caused fires.


…and to end this article on an even more optimistic note, watch this blog for big news on the future of WyEast Country in the coming days! That’s a teaser, by the way…

As always, thanks for stopping by!

_______________

Tom Kloster • February 2021